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ABSTRACT 

Will Artificial Intelligence (AI) increase or decrease human expertise in science?  The purpose 

of this paper is to examine the impact of a methodological advance in artificial intelligence, 

specifically the unexpected success of AlphaFold1 in 2018, on the size and expertise composition of 

scientific organizations. AlphaFold1 represented a significant breakthrough in the scientific subfield 

of “protein folding” (PF) within computational biology. The unexpected success of AlphaFold1 

prompted principal investigators of established academic labs engaged in similar PF-related software 

development to evaluate whether and how to continue their work in the PF subfield. The findings 

indicate that the labs affected by AlphaFold1 grew in size, mainly through increased recruitment of 

PhD students and Postdoctoral researchers. However, principal investigators engaged in varying 

knowledge-generating strategies for contributing to the PF subfield which reflected their academic 

backgrounds. The analysis addresses several issues: (i) the approaches through which principal 

investigators identified new opportunities arising with Alphafold1, (ii) the impact on competition 

between academic labs and its consequences for lab composition; and (iii) the implications of 

Alphafold1’s computational excellence for the reshaping of projects pursued by human scientists. 
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INTRODUCTION 

The size and expertise composition of scientific organizations play a central role in their processes of 

scientific knowledge production. Past research on this topic has primarily focused on a specific type 

of scientific organization: teams of co-authoring scientists (Jones, 2009; Uzzi, Mukherjee, Stringer & 

Jones, 2013; Kaplan & Vakili, 2015; Agrawal, Goldfarb & Teodoridis, 2016; Teodoridis, 2018; 

Vakili & Kaplan, 2021). Previous studies have revealed that co-authoring teams increase in size when 

novel ideas become available (Agrawal, Goldfarb & Teodoridis, 2016) or when cost-reducing 

technologies facilitate collaborations among scientists (Teodoridis, 2018). The utilization of AI-based 

software may encourage the expansion of scientific teams, as larger teams have the capacity to engage 

in broader knowledge recombination across different domains (Agrawal, McHale & Oettl, 2018). 

This effect may be particularly salient in the life sciences, where artificial intelligence is increasingly 

used for predicting complex biological phenomena (Cockburn, Henderson & Stern, 2019). 

Furthermore, the breadth of expertise within collaborative teams enables wider knowledge 

recombinations (Weitzman, 1998; Uzzi et al., 2013; Asgari, Singh & Mitchell, 2017; Vakili & 

Kaplan, 2021). The depth of expertise among collaborating scientists proves beneficial when 

technical knowledge is required to identify gaps and anomalies within a scientific domain (Weisberg, 

1999; Kaplan & Vakili, 2015).  

An important but often overlooked type of scientific organization involved in the production 

of scientific knowledge is academic labs (Jones, 2021). Common in the life sciences (Sampat & 

Lichtenberg, 2011; Azoulay, 2019), academic labs are characterized by the presence of a principal 

investigator who exercises “overarching control” over project execution, recruitment decisions, and 

task allocation to lab members (Jones, 2021, p. 204). When external advances offer new insights, 

principal investigators may reconsider their approaches to scientific problems. How do principal 

investigators of established academic research labs react to unexpected methodological advances? 



3 

 

How do they modify the size and expertise composition of their labs in response to these advances? 

These questions are at the heart of the research reported here. 

This paper examines the impact of a methodological advance in artificial intelligence on the 

size and expertise composition of established academic labs. Specifically, the paper focuses on the 

unexpected success of AlphaFold1 in the CASP (Critical Assessment of protein Structure Prediction) 

initiative in 2018. Held every two years since 1994, the CASP initiative attracts academic labs which 

compete to develop software for predicting the 3-dimensional (3-D) structure of proteins from their 

amino acid sequences, a scientific problem known as the “protein folding” (PF) problem. Developed 

by Google’s DeepMind, AlphaFold1 is an AI-based software program that significantly improved 

protein structure prediction, marking a breakthrough in the PF subfield of computational biology. As 

an AI-based software program, AlphaFold1 is not transparent in its inference process. This lack of 

transparency hinders casual understanding of the process that generates its output, resulting in what 

is known as the “black box” problem in AI. Additionally, while AlphaFold1 demonstrates remarkable 

performance in its specific task, it falls short when addressing other protein-related scientific 

problems. 

The response of principal investigators engaged in PF-related software development depends 

on how they view AlphaFold1. If Alphafold1 is seen as a nearly definitive solution to the PF problem, 

then principal investigators may opt to quit the PF research field, since AI-based software has the 

potential to make human competences and similar software obsolete. If AlphaFold1 is instead viewed 

as a methodological advance that can inspire further scientific research, principal investigators may 

choose to adapt to the shock. This paper focuses on the decisions of principal investigators to adapt 

to AlphaFold1 by examining the changes in the size and expertise composition of their labs. The 

paper argues that principal investigators engaged in PF-related software development adapted to 

AlphaFold1 by increasing the size of their labs. Moreover, this paper proposes that principal 
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investigators decided to either broaden or deepen the expertise composition within their labs to pursue 

different knowledge-generating strategies. These decisions were based on their academic background 

and how they anticipated capitalizing on the advances introduced by AlphaFold1. 

Overall, the findings suggest that Alphafold1 opened new areas of inquiry that led to the 

expansion of established academic labs, and to the recruitment of greater numbers of computational 

scientists in most PF labs. The exception was among labs run by principal investigators with an 

interdisciplinary background in both the life sciences and computational sciences. An 

interdisciplinary background is aligned with a greater emphasis on life sciences after Alphafold1, 

suggesting that principal investigators with the most experience attach greater emphasis on the 

implications of AI for human life science. The results have implications for further research on how 

artificial intelligence elevates requirements for interdisciplinary insights, scaled computational 

capabilities, and the organization of science itself. 

BACKGROUND AND SETTING 

This section first describes the context in which AlphaFold1 was developed (i.e., the CASP initiative 

and the “protein folding” problem). It then describes what AlphaFold1 represents as a methodological 

advance in artificial intelligence. Lastly, this section describes how AlphaFold1 is expected to impact 

established academic labs engaged in PF-related software development. 

The CASP initiative and the “protein folding” (PF) problem 

The CASP (i.e., Critical Assessment of protein Structure Prediction) initiative is a competition 

between academic labs which has taken place every two years since 1994.1 In the CASP initiative, 

participating academic labs compete by developing software to computationally model a specific 

scientific phenomenon, i.e., the prediction of proteins’ 3-dimensional (3-D) structures from their 

 
1 Website: https://predictioncenter.org/ 

https://predictioncenter.org/
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amino acid sequences (DeepMind, 2020a). This scientific phenomenon is commonly referred to as 

the “protein folding” (PF) problem.2 The CASP initiative aims “at establishing the current state of the 

art in protein structure prediction, identifying what progress has been made, and highlighting where 

future effort may be most productively focused” (Protein Structure Prediction Center, n.d.).3 

Over the period from 1972 to 2020, scientists primarily determined the 3-D structures of 

proteins through experimental physical techniques, such as X-ray crystallography or cryo-electron 

microscopy. These experimental techniques present numerous problems, including extensive trial 

error, time consumption, and high costs to determine the 3-D structure of even a single protein 

(DeepMind, 2020a). Through initiatives such as CASP, scientists develop software as an alternative 

to experimental physical techniques with the effect of minimizing costs and enabling knowledge 

production through computational simulations (DeepMind, 2020a). 

The metric used in the CASP initiative to compare performance of software developed by 

competing academic labs is the “Global Distance Test” (GDT), which is a score ranging from 0 to 

100, and which is defined as the “percentage of amino acid residues (beads in the protein chain) 

within a threshold distance from the correct position” (DeepMind, 2020b, “Results from the CASP14 

assessment” section, para. 2). The GDT score expresses how well the computational prediction 

approximates the real 3-D structure of a protein. In the words of Professor John Moult (co-founder 

and chair of CASP), “On a scale of zero to a hundred, you would expect a GDT over 90 to be a 

solution to the problem” (DeepMind, 2020c, 2.24-2.33); “a score of around 90 GDT is informally 

considered to be competitive with results obtained from experimental methods” (DeepMind, 2020d, 

Introduction section, para. 3). 

 
2 For more information on the “protein folding” problem: https://www.deepmind.com/blog/alphafold-using-ai-for-

scientific-discovery-2020  
3 Website: https://predictioncenter.org/  

https://www.deepmind.com/blog/alphafold-using-ai-for-scientific-discovery-2020
https://www.deepmind.com/blog/alphafold-using-ai-for-scientific-discovery-2020
https://predictioncenter.org/
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DeepMind participated for the first time in the CASP initiative in 2018 with the first version 

of AlphaFold (called AlphaFold1), which had outperformed the software developed by established 

PF academic labs in idiosyncratic competitions over the prior 24 years. In December 2018, 

AlphaFold1 achieved a median score of 58.9 GDT; in December 2020, AlphaFold2 improved 

drastically, achieving a score of 87.0 GDT (Callaway, 2020; DeepMind, 2020b). This paper considers 

the unexpected success of AlphaFold1 in CASP in 2018 as a shock (Senior et al., 2020). 

What is AlphaFold1? 

AlphaFold1 is a publicly available AI-based software program that makes accurate but imperfect 

inferences about the scientific structure of a specified biological outcome. In the CASP competition, 

the outcomes are the 3-D structures of pre-specified proteins in their final form (DeepMind, 2020c). 

AlphaFold1 was developed by DeepMind, a laboratory founded in 2010 and acquired by Google in 

2014, which focuses on developing AI-based systems. 

AI-based software carries the promise of foundational advancement in science. AlphaFold1 

may represent an AI-enabled case of an “invention of a method of inventing” (Griliches, 1957, p. 

502; Cockburn, Henderson & Stern, 2019, p. 116). Advances in deep learning are leading to 

exponential improvements of the efficacy of AI-based software in problems of classification and 

prediction (Agrawal, Gans & Goldfarb, 2018). AI-based software can be beneficial for problems of 

classification because it allows faster and more effective “combinatorial search over a vast range of 

possibilities” (Agrawal, McHale & Oettl, 2022, p. 1), thus allowing recombinations of knowledge 

across multiple domains (Weitzman, 1998). When it comes to problems of prediction, AI-based 

software can detect patterns from massive datasets that provide information about biological 

phenomena (Cockburn, Henderson & Stern, 2019). Thus, AI-based software has the potential to play 

a transformative role in many scientific endeavors, especially in the life sciences. 
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 However, questions remain about the validity of scientific knowledge produced through AI. 

AI-based software is quicker and more effective than humans in delivering a solution to problems of 

classification and prediction (Kurzweil, 2005).4 Yet, AI-based software suffers from a “black box” 

problem, since the process that leads to solutions is updated algorithmically at speeds that are 

undeciphered and indecipherable to scientists, which makes its action mysterious and construed as 

unknown (Castelvecchi, 2016). The power of AI-based software in obtaining inferences about 

scientific phenomena is enabled by the absence of recording of the machine learning that occurs 

within them. The very success of an AI-based software program such as AlphaFold1 at obtaining a 

solution to a previously unsolved scientific problem depends on the unobservability of the method of 

the inference. The computational speed and power of AlphaFold1 is accompanied by this 

characteristic absence of transparency in how inferences are achieved: “AlphaFold has improved our 

ability to predict a protein structure from its sequence; but hasn’t directly increased our understanding 

of how protein sequence relates to structure” (Foldit, 2020, “AlphaFold Performance in CASP” 

section, para. 4).  Like other AI-based software programs, AlphaFold1 integrally does not contribute 

to causal understanding of how the solution was obtained (Kim, 2022).  

As an AI-based software program, AlphaFold1 is relatively narrow in its applicability. It 

represents an Artificial Narrow Intelligence (ANI), which means that it is very good (although not 

perfect) at solving a specific and well-defined problem but limited in applicability to other scientific 

phenomena (Fjelland, 2020). The narrowness of AlphaFold1’s application creates a demand for 

human expertise in identifying the problems for which the software is appropriate as well as in 

evaluating its outputs (Athey, Bryan & Gans, 2020), and in assessing the quality of the software itself.  

 
4 Ray Kurzweil was hired as Google’s director of engineering in 2012.  
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In addition to being a publicly available AI-based software program, AlphaFold is multi-

faceted in nature. It has the potential to become a “General Purpose Technology” (Bresnahan & 

Trajtenberg, 1995, p. 83; Gambardella & McGahan, 2010, p. 262; Bresnahan, 2023) since it is 

applicable to basic and commercial uses across different domains, and it is open to improvements and 

complementarities. Made publicly available by DeepMind on GitHub,5 AlphaFold may also represent 

a public good (Stiglitz, 1999) that has the potential to serve the public interest of the global scientific 

community. Discerning the nature of AlphaFold is necessary for understanding its potential 

commercial and scientific impact. 

This study focuses on AlphaFold1 as a methodological advance in artificial intelligence, and 

on its impact on scientific organizations engaged in the development of similar software. Specifically, 

AlphaFold1 presents an opportunity to delve into the dynamic interplay between organizations and 

technology (Orlikowski, 1992, 2000) by assessing the ways in which principal investigators of 

established academic labs engaged in similar software development were compelled to re-assess their 

own approach to the “protein folding” problem. 

The Impact of AlphaFold1 on Principal Investigators of Established Academic Labs 

There are a range of possible responses to AlphaFold1 by principal investigators of established 

academic labs engaged in PF-related software development. If principal investigators view 

AlphaFold1 as a nearly definitive solution to a scientific problem, then they may see their investments 

in resources and competences for investigating the “protein folding” problem as made obsolete. 

Alternatively, they may consider AlphaFold1 as an exceptional methodological advance in artificial 

intelligence upon which to capitalize, but not as a definitive solution to the “protein folding” problem. 

 
5 AlphaFold1: https://github.com/deepmind/deepmind-research/tree/master/alphafold_casp13  

AlphaFold2: https://github.com/deepmind/alphafold 

https://github.com/deepmind/deepmind-research/tree/master/alphafold_casp13
https://github.com/deepmind/alphafold
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The methodological advance brought by AlphaFold1 could inspire future research of 

established academic labs. According to many experts, the “protein folding” problem is “not yet 

solved” (Moore, Hendrickson, Henderson & Brunger, 2022, p. 507). In the words of Professor Jinbo 

Xu (Associate Professor at the Toyota Technological Institute at Chicago, and Senior Fellow of the 

Computation Institute at the University of Chicago in Illinois), “The open-source nature of the tools 

means that the scientific community should be able to build on the advances to create even more 

powerful and useful software” (Callaway, 2021, Introduction section, para. 4). According to experts 

such as Professor Janet M. Thornton (Director Emeritus at the European Bioinformatics Institute) and 

Professor David T. Jones (Professor in Bioinformatics at the University College of London), 

AlphaFold will stimulate “fierce competition to improve the method even further and new 

applications of machine learning to help illuminate proteomes and their many interactions” (Jones & 

Thornton, 2022, Abstract section, p. 15). After the release of the source code, PF labs have started re-

interpreting and re-producing AlphaFold1’s (and AlphaFold2’s) code with their own twists.6 

Therefore, AlphaFold1 may not represent a nearly definitive solution to a scientific problem 

that leads established researchers to stop investing. Rather, DeepMind’s participation in PF may 

represent the beginning of a period of increased dynamism in a scientific subfield. To pursue the 

opportunities revealed by AlphaFold1, principal investigators of established academic labs may have 

responded by recombining their organizations (Levinthal, 1997). 

THEORY 

The Theory section begins by considering the decision faced by principal investigators of established 

academic labs: either to quit the impacted subfield or to adapt to the methodological advance brought 

by AlphaFold1. Then, this section proposes hypotheses about the impact of AlphaFold1 on the size 

 
6 After AlphaFold1: https://www.biorxiv.org/content/10.1101/830273v2.abstract 

After AlphaFold2: https://github.com/biolists/folding_tools 

https://www.biorxiv.org/content/10.1101/830273v2.abstract
https://github.com/biolists/folding_tools
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of established academic research engaged in PF-related software development. Lastly, the theoretical 

discussion formulates hypotheses about the impact of AlphaFold1 on principal investigators’ choices 

in terms of the expertise composition of their labs, contingent upon their academic background. 

Decisions by Principal Investigators of Established Academic Labs: Quit or Adapt? 

Academic research in the computational life sciences is predominantly conducted in labs managed 

by principal investigators (Sampat & Lichtenberg, 2011; Azoulay, 2019). Decisions about which 

scientific projects to undertake or abandon are made primarily by principal investigators (Jones, 

2021). In response to the shock represented by AlphaFold1, principal investigators may thus react in 

one of two ways: they may decide to quit the PF scientific subfield; or they may instead decide to 

stay and adapt to the methodological advance brought by AlphaFold1 (Figure 1). 

------------------------------------------------------ 

Insert Figure 1 about here 

------------------------------------------------------ 

Two main reasons explain why principal investigators may decide to quit the PF subfield. 

First, by automating tasks, AI-based software may make human competences obsolete (Acemoglu & 

Restrepo, 2019) and similar software useless. This reason was summarized by Professor Mohammed 

AlQuraishi (Principal Investigator of the AlQuraishi Laboratory and Assistant Professor in the 

Department of Systems Biology at Columbia University) in 2018: 

“In a delicious twist of irony, we the people who have bet their careers on trying to 

obsolete crystallographers are now worried about getting obsoleted ourselves. […] [F]or some 

of us it will make sense to go into industrial labs, while for others it will mean staying in 

academia but shifting to entirely new problems or structure-proximal problems that avoid 

head-on competition with DeepMind” (AlQuraishi, 2018, “What just happened?” section, 

para. 1 and 3). 
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Second, when an innovation solves a problem definitively, no further research on that problem 

is needed. After a scientific problem is solved, labs shift their efforts to areas in which there are greater 

opportunities, with “unmet therapeutic needs and unexploited biological mechanisms” (Pammolli, 

Magazzini & Riccaboni, 2011, p. 428). Moreover, funding and talent tend to flow towards academic 

labs and research fields that have higher likelihoods of new impactful discoveries (Merton, 1968; 

Latour & Woolgar, 1986; Kitcher, 1990; Strevens, 2003). 

Current literature documents the potential complementarity between humans and machines in 

decision-making processes (Puranam, 2021; Agrawal, Gans & Goldfarb, 2022). If AlphaFold is 

viewed as a methodological advance in artificial intelligence that can benefit established academic 

labs, principal investigators may elect to adapt to the shock. Scientists make significant investments 

of time, effort, and resources to enter a knowledge domain (Fleming, 2001; Jones, 2009; Leahey, 

Beckman & Stanko, 2017). If a scientific subfield is impacted by a novel methodological advance 

and scientists expect to build upon it, principal investigators may choose to adapt rather than quit. 

This assertion aligns with prior theoretical research demonstrating that organizations are unlikely to 

give up on past efforts (Perignat & Fleming, 2022) due to sunk costs (Stiglitz, McFadden & Peltzman, 

1987), and the potential value of accumulated expertise.  

This paper focuses on the decision by principal investigators of established academic labs 

engaged in PF-related software development to adapt. Conditional on staying in the impacted research 

subfield, the paper examines how they responded to the shock in terms of size and expertise 

composition of their labs. 

Decision by Principal Investigators on Lab Size 

As ideas are “getting harder to find” (Bloom, Jones, Van Reenen & Webb, 2020, p. 1104) and a 

growing “burden of knowledge” is placed upon scientists’ shoulders (Jones, 2009, p. 283), teams 
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performing scientific research are becoming bigger and more interdisciplinary (Haeussler & 

Sauermann, 2020). By growing in size, scientific organizations can improve their ability to adapt and 

capitalize on scientific breakthroughs, such as methodological advances in artificial intelligence. 

Past literature has focused on some of the factors that lead to increases in size of scientific 

organizations. One is the need to gather new competences in response to ground-breaking 

technological advances (Lacetera, Cockburn & Henderson, 2004). Adoption of science-based drug 

discovery by pharmaceutical firms was shown to be correlated with the hiring of star scientists – a 

finding consistent with the idea that changes in organizations’ capabilities can be obtained through 

recruitment processes (Lacetera, Cockburn & Henderson, 2004). A second factor shown to lead to 

increases in size of scientific organizations is the influx of novel ideas after institutional shocks 

(Agrawal, Goldfarb & Teodoridis, 2016). The fall of the Soviet Union led to an inflow of Soviet 

mathematicians into Western universities (Agrawal, Goldfarb & Teodoridis, 2016). In subfields of 

mathematics in which Soviet mathematicians were strongest, teams of co-authoring scientists grew 

disproportionately in size (Agrawal, Goldfarb & Teodoridis, 2016). Third, novel platforms which 

reduce costs for integrating diverse competences have been shown to stimulate collaborations among 

scientists (Teodoridis, 2018). The hacking of Microsoft Kinect reduced entry costs for generalists, 

who could access the “motion sensing” research area and establish collaborations with outside-area 

specialists (Teodoridis, 2018). Novel technological advances can thus open new opportunities for 

knowledge recombinations (Teodoridis, 2018). Moreover, research in the field of strategic 

management has addressed the role played by AI-based software on the size of scientific teams. 

Current literature argues that AI-based software encourages increases in scientific teams’ size because 

larger teams can recombine more widely across knowledge domains (Agrawal, McHale & Oettl, 

2018, 2022). These findings suggest that increases in lab size are beneficial because knowledge 
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resulting from multiple scientists can yield more impactful discoveries (Wuchty et al., 2007). Thus, 

the paper proposes the following hypothesis: 

Hypothesis 1. After a methodological advance in artificial intelligence appears within a scientific 

subfield, exposed principal investigators are likely to adapt by increasing the size of their labs. 

Principal Investigators’ Academic Background as a Contingency for Changes in Lab Expertise 

Composition 

 Decisions made by principal investigators about the expertise composition of their labs are 

influenced by various factors. Resource allocation significantly impacts the types of expertise present 

in a lab (Zhuo, 2022) and the knowledge-generating strategies pursued by scientists (Boudreau, 

Guinan, Lakhani & Riedl, 2016). While some principal investigators may allocate resources to recruit 

expertise for the exploitation of existing scientific opportunities, others may instead opt for more 

exploratory and risky projects in lesser-known research subfields (Zhuo, 2022). Another factor that 

can affect the expertise composition and knowledge-generating strategies of academic labs is the 

cognitive perspective of key organizational decision-makers (Kaplan & Tripsas, 2008), manifested 

through principal investigators’ academic background in this setting. This paper explores the role of 

principal investigators’ academic background on decisions regarding the expertise composition 

within their labs. The aim of the paper is to gain insights into how different academic backgrounds 

have led principal investigators to pursue distinct knowledge-generating strategies through decisions 

on lab expertise composition, in response to the appearance of a methodological advance in artificial 

intelligence within their scientific subfield. 

According to past literature, innovation can be the result of both broad recombinative 

processes (Weitzman, 1998; Fleming, 2001) and deep expertise within a knowledge domain 

(Weisberg, 1999; Taylor & Greve, 2006; Kaplan & Vakili, 2015). Greater breadth of knowledge 
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inputs through expanded expertise areas allows for more novel knowledge recombinations, which in 

turn lead to more impactful innovations (Weitzman, 1998; Schilling & Green, 2011; Uzzi et al., 

2013). Expertise depth has been shown to stimulate innovation in domains requiring deep knowledge 

for identifying foundational gaps and anomalies (Weisberg, 1999; Taylor & Greve, 2006; Kaplan & 

Vakili, 2015). This paper proposes that principal investigators decided to either broaden or deepen 

the expertise composition within their labs to pursue different knowledge-generating strategies. These 

decisions were based on their academic background and how they anticipated capitalizing on the 

advances introduced by AlphaFold1. 

If the knowledge-generating strategy pursued by principal investigators engaged in PF focuses 

on the optimization of software efficacy, and if they expect to be able to compete with AlphaFold1 

by incorporating its advances into their own proprietary software, then it makes sense for them to 

deepen computational expertise within their own labs. Scientists with deep expertise are more likely 

to absorb and use knowledge at the frontier (Teodoridis, Bikard & Vakili, 2019). Principal 

investigators who possess an academic background in the computational sciences may thus decide to 

deepen the expertise of their labs through recruitment of individuals with a similar background, 

especially if they have previous experience in adopting and absorbing valuable code (King & 

Lakhani, 2011). Knowledge similarity between principal investigators and newly recruited lab 

members would ensure more effective knowledge production in the form of more effective PF-related 

software (Lane, Ganguli, Gaule, Guinan & Lakhani, 2021). Therefore, when a methodological 

advance in artificial intelligence appears within a scientific subfield, principal investigators who hold 

the belief that they can compete with AlphaFold1 may respond by deepening expertise within their 

labs. Principal investigators with an academic background in the computational sciences may seek to 

absorb frontier knowledge as effectively as possible through recruitment of lab members with a 

similar background.  
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Hypothesis 2a. After a methodological advance in artificial intelligence appears within a scientific 

subfield, exposed principal investigators are likely to deepen the expertise within their labs if their 

academic background leads them to believe that they can incorporate the novel knowledge brought 

by the advance. 

If the knowledge-generating strategy pursued by principal investigators engaged in PF focuses 

on the understanding of biological mechanisms, they may find useful to incorporate within their labs 

novel knowledge components to strengthen their computer-modelling competences. In the attempt to 

improve the computational competences of their labs, principal investigators with an academic 

background in life sciences may be willing to broaden the expertise of their labs. Expertise breadth 

can help scientists and organizations maximize their innovative output (March, 1991; Jeppesen & 

Lakhani, 2010; Leiponen & Helfat, 2011), especially in broadly applied and modular technological 

domains such as software development (Vakili & Kaplan, 2021). Therefore, when a methodological 

advance in artificial intelligence appears within a scientific subfield, principal investigators who focus 

on the wider implications of “protein folding” may respond by broadening expertise with their labs. 

Principal investigators with an academic background in the life sciences may seek to integrate as 

many diverse knowledge components as possible and strengthen their labs’ software development 

competences through recruitment of lab members with a different background. 

Hypothesis 2b. After a methodological advance in artificial intelligence appears within a scientific 

subfield, exposed principal investigators are likely to broaden the expertise within their labs if 

their academic background leads them to believe that they need additional knowledge components 

to benefit from the advance. 
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 If the knowledge-generating strategy pursued by principal investigators engaged in PF focuses 

on the tractability of biological phenomena, they may consider a methodological advance such as 

AlphaFold1 as a source of ideas for research on other PF-related scientific problems. When 

competition for creativity reaches excessive intensity, innovators may stop investing (Boudreau, 

Lakhani & Menietti, 2016; Gross, 2020), especially in cases where the problem at hand has become 

less uncertain (Boudreau, Lacetera & Lakhani, 2011). Principal investigators with a background in 

both the life and the computational sciences may believe that the competition between academic labs 

has become too intense and decide to investigate novel PF-related problems which cannot be 

addressed through AlphaFold1. To identify novel PF-related problems, principal investigators with 

an interdisciplinary background may decide to reduce over-specialization and over-reliance on past 

computational approaches (Bryan, 2017), and attach greater emphasis on expertise related to the 

experimental life sciences. Therefore, when a methodological advance in artificial intelligence 

appears within a scientific subfield, principal investigators who believe that methodological advances 

in artificial intelligence are limited in their ability to tract different biological phenomena may 

respond by reshaping the expertise composition of their labs through lab rotations. Principal 

investigators with an interdisciplinary academic background may seek to tackle novel PF-related 

problems by retaining lab members who have the expertise to identify these novel problems.  

Hypothesis 2c. After a methodological advance in artificial intelligence appears within a scientific 

subfield, exposed principal investigators are likely to reshape the expertise composition within 

their labs if their academic background leads them to believe that they can extend the novel 

knowledge brought by the advance to related scientific problems. 
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DATA AND EMPIRICAL ANALYSIS 

This section describes how data about labs, lab members, and principal investigators were collected. 

Then, it describes how the variables of interest (size, by role and expertise type) were constructed. 

Lastly, this section describes the estimation strategy for measuring how established academic labs 

engaged in PF-related software development changed their size and expertise composition after the 

unexpected success of AlphaFold1.  

Data Collection 

The analysis considers data from 177 academic labs, which are based in 120 institutions located in 

25 countries (as shown in Figure 2 and Figure 3). Figure 4 illustrates the distribution of institutions 

by country and scientific subfield.  These 177 labs were identified by searching through the websites 

of academic institutions worldwide, specifically in the departments of Biology, Chemistry, 

Biochemistry, Medicine, Physics, Computer Science, Mathematics, and Statistics. Each lab has its 

own website. 

------------------------------------------------------ 

Insert Figures 2, 3 and 4 about here 

------------------------------------------------------ 

All the labs considered in the analysis are engaged in software development for 

computationally modelling protein-related phenomena (i.e., protein folding, protein-protein 

interactions, protein-DNA docking, etc.). In the scientific field of protein-related computational 

biology, the main output of academic labs is software. To test the validity of their software, principal 

investigators participate in various community-wide initiatives, in which they compete against each 

other. Examples of these initiatives are: (i) the Critical Assessment of protein Structure Prediction 
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(CASP);7 (ii) the Critical Assessment of protein Function Annotation algorithms (CAFA);8 (iii) the 

Critical Assessment of Genome Interpretation (CAGI);9 (iv) the Critical Assessment of Metagenome 

Interpretation (CAMI);10 (v) the Critical Assessment of PRedicted Interactions (CAPRI);11 (vi) the 

Continuous Automated Model EvaluatiOn (CAMEO);12 (vii) the Critical Assessment of Intrinsic 

protein Disorder (CAID);13 and others. When participating in these initiatives, principal investigators 

test the efficacy of their own software against the efficacy of software developed in other academic 

labs. After participating in these initiatives, principal investigators make their software public on their 

labs’ websites. 

To determine if an academic lab is engaged in PF-related software development, the analysis 

considers whether it has participated in the Critical Assessment of protein Structure Prediction 

(CASP) initiative at least once between 2014 and 2018, prior to the unexpected success of 

AlphaFold1. The participation of principal investigators in the CASP initiative during this period was 

determined by extracting their names from the “Abstract Books” of each edition. These “Abstract 

Books” provide information on the labs that participated in each edition of the CASP initiative.14 

Participation in the CASP initiative is used as a proxy to operationalize whether an academic lab is 

engaged in PF or not, and thus whether a lab is classified as treated or not. The limitations of this 

approach will be described in the Discussion section. 

 
7 Website of CASP: https://predictioncenter.org/  
8 Website of CAFA: https://www.biofunctionprediction.org/cafa/  
9 Website of CAGI: https://genomeinterpretation.org/  
10 Website of CAMI: https://data.cami-challenge.org/  
11 Website of CAPRI: https://www.capri-docking.org/  
12 Website of CAMEO: https://www.cameo3d.org/  
13 Website of CAID: https://idpcentral.org/caid  
14 Labs participating in the CASP initiative in 2018: https://predictioncenter.org/casp13/doc/CASP13_Abstracts.pdf 

Labs participating in the CASP initiative in 2016: https://predictioncenter.org/casp12/doc/CASP12_Abstracts.pdf 

Labs participating in the CASP initiative in 2024: https://predictioncenter.org/casp11/doc/CASP11_Abstracts.pdf 

https://predictioncenter.org/
https://www.biofunctionprediction.org/cafa/
https://genomeinterpretation.org/
https://data.cami-challenge.org/
https://www.capri-docking.org/
https://www.cameo3d.org/
https://idpcentral.org/caid
https://predictioncenter.org/casp13/doc/CASP13_Abstracts.pdf
https://predictioncenter.org/casp12/doc/CASP12_Abstracts.pdf
https://predictioncenter.org/casp11/doc/CASP11_Abstracts.pdf
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When considering all labs, the analysis includes 55 treated labs and 122 control labs, resulting 

in a total of 177 labs. When focusing only on senior labs (i.e., labs that have been operational 

throughout the entire 2015-2021 period), the analysis includes 42 treated labs and 101 control labs, 

resulting in a total of 143 senior labs (Figure 5). 

------------------------------------------------------ 

Insert Figure 5 about here 

------------------------------------------------------ 

Data about the size and expertise composition of the labs were collected manually using the 

following approach. The names and surnames of current and former lab members were gathered from 

the labs’ websites. Many labs provide information about both current members and former members 

(often referred to as labs’ alumni), including their roles in the lab (such as Research Assistant, PhD 

Student, Postdoctoral researcher, Staff, Visiting Professor, etc.) and the duration of their time in the 

lab (start and end dates)15. In cases where websites did not provide information about former members 

or their period in the lab, historical versions of the websites were accessed using Wayback Machine16, 

an Internet archive that stores snapshots of websites over time. Wayback Machine was also used to 

verify the information obtained from current websites. 

After collecting the names and surnames of current and former lab members, information 

about each individual was obtained from LinkedIn. On LinkedIn, data regarding the period spent in 

the lab was gathered and validated against the information already provided on the labs’ websites. 

Additionally, the complete academic background of each lab member, including the fields in which 

they obtained their Bachelor’s, Master’s, and/or PhD degrees, was recorded. 

 
15 An example: https://digbio.missouri.edu/our-team/ 
16 Wayback Machine: https://web.archive.org/  

https://digbio.missouri.edu/our-team/
https://web.archive.org/
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An example illustrates how the dataset was built. On the website of Lab k, an individual was 

reported to have worked as a Research Assistant from 2014 to 2017. After collecting this information, 

her name and surname were searched on LinkedIn. This individual reported to have obtained a 

Bachelor’s degree in Biology in the period from 2012 to 2015; a Master’s degree in Computer Science 

in the period from 2015 to 2018; and a PhD in Computational Biochemistry in the period from 2018 

to 2022. Moreover, in her professional experience on LinkedIn, this individual confirmed to have 

worked as a Research Assistant in Lab k from 2014 to 2017. In the dataset, this individual was coded 

as follows: in 2014, as an Undergraduate Research Assistant with expertise in Biology; in years 2015, 

2016, and 2017, as a Master’s Research Assistant with expertise in Biology and Computer Science. 

Her experience in Computational Biochemistry was not considered because it arose after she left the 

lab. 

The analysis considers information about labs’ size and expertise composition during a seven-

year period from 2015 to 2021 (inclusive), which includes four years prior to AlphaFold1 in 2018, 

and three years subsequent to it. 

Variables of Interest: Lab Size and Expertise Composition 

Lab size is measured as the yearly count of unique lab members. Expertise composition within labs 

is measured using information about the academic backgrounds of each lab member. Lab members, 

including principal investigators, were classified into three main expertise types based on their 

academic backgrounds: (i) Life Sciences (LS); Computational Sciences (CS); and (iii) a combination 

of both Life and Computational Sciences (LS+CS). 

Lab members were classified as having a Life Sciences (LS) academic background if they 

obtained their degrees exclusively in disciplines related to experimental life sciences, such as Biology, 

Chemistry, Biochemistry, Medicine, Pharmacology, Genetics, or Microbiology. Lab members with a 
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Computational Sciences (CS) academic background obtained their degrees in fields related to 

computational sciences, such as Computer Science, as well as other sciences not directly associated 

with experimental life sciences such as Mathematics, Physics, Statistics, or Engineering. Lab 

members with an academic background in both Life and Computational Sciences (LS+CS) possess 

expertise in both domains. For example, they may have obtained their degrees in disciplines which 

are the intersection of both the life and computational sciences, such as Bioinformatics, 

Computational Biochemistry, or Biophysics. LS+CS members may also have obtained distinct 

degrees in the two separate types of sciences throughout their academic careers. For instance, they 

may have obtained a Bachelor’s degree in Biology and a PhD degree in Computer Science. 

Expertise composition is calculated as the number of unique lab members in the LS, CS, and 

LS+CS groups. Changes in the expertise composition of labs are measured by considering the 

alignment between the academic backgrounds of principal investigators and recruited lab members. 

For instance, if a principal investigator with a CS academic background increases recruitment of 

profiles with a CS background, this indicates a deepening in expertise within the lab; if the same CS 

principal investigators increases recruitment of profiles a LS and/or LS+CS backgrounds, this 

indicates a broadening in expertise within the lab. 

Finally, lab members are classified into four primary roles within the lab: (i) Undergraduates 

and Master’s students; (ii) PhD students and Postdoctoral researchers; (iii) Staff; and (iv) Professors. 

Estimation Strategy 

Following a methodological advance in artificial intelligence in the PF subfield, this paper 

investigates the subsequent changes in the size and expertise composition of established academic 

labs engaged in PF-related software development. To examine these changes, the analysis utilizes a 

panel dataset with Lab k as the unit of analysis. Specifically, the study assesses differences between 

labs engaged in PF-related software development and labs engaged in software development for 
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computationally modelling other protein-related phenomena, before and after AlphaFold1. First, the 

analysis estimates the following two-way fixed effects equation (Teodoridis, 2018): 

𝐿𝑎𝑏𝑆𝑖𝑧𝑒𝑘,𝑡 =  𝛽0 +  𝛽1 ∙ 𝑃𝑜𝑠𝑡𝐴𝑙𝑝ℎ𝑎𝐹𝑜𝑙𝑑1𝑡 ∙ 𝐿𝑎𝑏𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝐹𝑜𝑙𝑑𝑖𝑛𝑔𝑘  +  𝜃𝑘  +  𝛾𝑡  +  𝜖𝑘𝑡 

Where LabSizek,t represents the number of unique members in Lab k in year t. PostAlphaFold1t is an 

indicator variable that takes the value of 1 for years after 2018 (i.e., 2019, 2020 and 2021). 

LabProteinFoldingk is an indicator variable that takes the value of 1 if Lab k has participated in CASP 

at least once between 2014 and 2018, and 0 otherwise. 𝜃𝑘 and 𝛾𝑡 are lab- and year-fixed effects, 

respectively. 

To estimate the impact of principal investigators’ academic background on changes in lab size 

and expertise composition, the analysis employs the following triple difference specification (Moser 

& Voena, 2012): 

𝐿𝑎𝑏𝑆𝑖𝑧𝑒𝑖,𝑘,𝑡 =  𝛽0 + 𝛽1 ∙ 𝐸𝑥𝑝𝑒𝑟𝑡𝑖𝑠𝑒𝑇𝑦𝑝𝑒𝑖 + 𝛽2𝑡 ∙ 𝐿𝑎𝑏𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝐹𝑜𝑙𝑑𝑖𝑛𝑔𝑘 ∙ 𝑌𝑒𝑎𝑟𝑃𝑜𝑠𝑡𝐴𝑙𝑝ℎ𝑎𝐹𝑜𝑙𝑑𝑉1𝑡 

+ 𝛽3 ∙ 𝐸𝑥𝑝𝑒𝑟𝑡𝑖𝑠𝑒𝑇𝑦𝑝𝑒𝑖 ∙ 𝐿𝑎𝑏𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝐹𝑜𝑙𝑑𝑖𝑛𝑔𝑘 + 𝛽4𝑡 ∙ 𝐸𝑥𝑝𝑒𝑟𝑡𝑖𝑠𝑒𝑇𝑦𝑝𝑒𝑖 ∙ 𝑌𝑒𝑎𝑟𝑃𝑜𝑠𝑡𝐴𝑙𝑝ℎ𝑎𝐹𝑜𝑙𝑑𝑉1𝑡 

+ 𝛽𝑡 ∙ 𝐸𝑥𝑝𝑒𝑟𝑡𝑖𝑠𝑒𝑇𝑦𝑝𝑒𝑖 ∙ 𝐿𝑎𝑏𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝐹𝑜𝑙𝑑𝑖𝑛𝑔𝑘 ∙ 𝑌𝑒𝑎𝑟𝑃𝑜𝑠𝑡𝐴𝑙𝑝ℎ𝑎𝐹𝑜𝑙𝑑𝑉1𝑡 + 𝜃𝑘  +  𝛾𝑡  +  𝜖𝑘𝑡 

Where LabSizei,k,t represents the number of unique members in Lab k led by a principal investigator 

with ExpertiseType i in year t. ExpertiseType i corresponds to the three main academic backgrounds 

(LS, CS, and LS+CS). 

The equations are estimated using a dataset covering the period from 2015 to 2021, which 

includes four years before the unexpected success of AlphaFold1 in 2018, and three years after. The 

dataset is structured at the lab-year level. 
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RESULTS 

Changes in Labs’ Size 

Table 1 provides results about the changes in the size of labs engaged in PF-related software 

development and compares these changes with labs that develop software for computationally 

modelling other protein-related phenomena. To assess these changes, Poisson Pseudo-Likelihood 

regressions were conducted, since the dependent variable involves yearly counts of lab members 

(Silva & Tenreyro, 2006). 

 Table 1 includes multiple columns, focusing on specific roles, including all labs and senior 

labs (i.e., labs that have been operational throughout the entire 2015-2021 period). Columns 1 and 2 

examine all lab members collectively. Columns 3 and 4 examine the recruitment of Undergraduate 

and Master’s students. The results for PhD students and Postdoctoral researchers are presented in 

Columns 5 and 6. Columns 7 and 8 present results about the recruitment of Staff members, while 

Columns 9 and 10 present results related to the Professors. 

------------------------------------------------------ 

Insert Table 1 about here 

------------------------------------------------------ 

The coefficient of the interaction term (PostAlphaFoldV1t * Lab_ProteinFoldingk) is positive 

and statistically significant when PhD students and Postdoctoral researchers are considered (Columns 

5 and 6 of Table 1). It is not statistically significant for the other categories of lab members. Since all 

labs hire PhD students and Postdoctoral researchers, but not necessarily the other categories, it is 

reasonable to focus exclusively on examining the effects on PhD students and Postdoctoral 

researchers. 

The results validate Hypothesis 1, demonstrating that following the unexpected success of 

AlphaFold1, principal investigators engaged in PF-related software development have significantly 
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increased their recruitment of PhD students and Postdocs compared to principal investigators of labs 

focused on software development for other protein-related phenomena. This finding supports the 

hypothesis that the methodological advance represented by AlphaFold1 has motivated principal 

investigators of PF labs to expand their lab sizes by recruiting more PhD students and Postdoctoral 

researchers. 

To check for pre-trends, the analysis presents additional figures. Figure 6 provides descriptive 

evidence showing a disproportionate increase in the average size of PF labs after 2018. When all PF 

labs are considered (blue line in Figure 6), the average number of PhD students and Postdoctoral 

researchers rose from approximately 7 during the period from 2015 to 2018, to around 9 in 2021. 

------------------------------------------------------ 

Insert Figure 6 about here 

------------------------------------------------------ 

Figures 7a, 7b, 7c, 7d present the estimated yearly differences across different roles within all 

labs; Figures 8a, 8b, 8c and 8d focus on senior labs. Examining Figures 7b and 8b, there are no 

significant differences in lab size concerning the recruitment of PhD students and Postdoctoral 

researchers until the success of AlphaFold1 in 2018. After 2018, the difference in size between PF 

labs and labs engaged in software development for other protein-related phenomena starts to widen. 

------------------------------------------------------ 

Insert Figures 7a, 7b, 7c, 7d about here 

------------------------------------------------------ 

------------------------------------------------------ 

Insert Figures 8a, 8b, 8c, 8d about here 

------------------------------------------------------ 

  To examine the influence of principal investigators’ academic background on their response 

to AlphaFold1, a triple difference estimation specification is employed. Figure 9a shows that principal 
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investigators with a CS background increased their recruitment of PhD students and Postdocs. Figure 

9b indicates that principal investigators with an LS background did not significantly alter the size of 

their labs. Interestingly, Figure 9c reveals that principal investigators with a LS+CS background 

reduced the number of PhD students and Postdoctoral Researchers. These findings remain consistent 

when considering only senior labs (i.e., labs that have been operational throughout the entire 2015-

2021 period), as depicted in Figure 10a, 10b, 10c. Principal investigators with different academic 

backgrounds showed distinct responses to the methodological advance represented by AlphaFold1. 

The next section will delve into how these distinct responses translated into different knowledge-

generating strategies. 

------------------------------------------------------ 

Insert Figures 9a, 9b, 9c about here 

------------------------------------------------------ 

------------------------------------------------------ 

Insert Figures 10a, 10b, 10c about here 

------------------------------------------------------ 

Changes in Lab Expertise Composition, Contingent upon Principal Investigators’ Academic 

Background 

To test Hypotheses 2a, 2b and 2c and explore how principal investigators with different academic 

backgrounds engaged in distinct knowledge-generating strategies through decisions on lab expertise 

composition, a triple difference estimation specification is employed here as well. Also lab members 

(i.e., PhD students and Postdoctoral researchers) are categorized into the three main expertise types: 

LS, CS, and LS+CS. 

 Figure 11a illustrates that principal investigators with a CS background increased their 

recruitment of PhD students and Postdoctoral researchers with a CS background. Figure 11b shows 
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that CS principal investigators stopped recruiting profiles with an LS background. Figure 11c 

indicates no significant changes in the recruitment of LS+CS lab members. These findings validate 

Hypothesis 3a, suggesting that principal investigators with a CS academic background, who have the 

greatest potential to benefit from a methodological advance in artificial intelligence, primarily 

adapted to AlphaFold1 by deepening the expertise within their labs and recruiting members with a 

similar CS background. One possible explanation is that these principal investigators are more likely 

to incorporate and utilize cutting-edge knowledge, believing they can leverage AlphaFold1’s 

advancements to enhance their own proprietary software. 

------------------------------------------------------ 

Insert Figures 11a, 11b, 11c about here 

------------------------------------------------------ 

 Figure 12a illustrates that principal investigators with an LS background increased their 

recruitment of PhD students and Postdoctoral researchers with a CS background. Figure 12b shows 

that LS principal investigators stopped recruiting profiles with an LS background. Figure 12c 

indicates no significant changes in the recruitment of LS+CS lab members. These findings validate 

Hypothesis 3b, suggesting that principal investigators with an LS academic background adapted to 

AlphaFold1 by broadening the expertise within their labs and recruiting profiles with a different (CS) 

background. One possible explanation is that LS principal investigators are expanding the capabilities 

of their labs by strengthening software competences in order to better understand the broader 

implications of protein folding. 

------------------------------------------------------ 

Insert Figures 12a, 12b, 12c about here 

------------------------------------------------------ 
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 Lastly, Figure 13a shows that principal investigators with an LS+CS background reduced their 

recruitment of PhD students and Postdoctoral researchers with a CS background. Moreover, Figure 

13b shows that LS+CS principal investigators stopped dismissing profiles with an LS background. 

Also here, Figure 12c indicates no significant changes in the recruitment of LS+CS lab members. 

These findings validate Hypothesis 3c, suggesting that principal investigators with an LS+CS 

background adapted to AlphaFold1 by reshaping the expertise composition of their labs, dismissing 

profiles who are over-specialized in building code (i.e., CS PhD students and Postdoctoral 

researchers), while also retaining profiles specialized in identifying new PF-related scientific 

problems to target (i.e., LS profiles).  

------------------------------------------------------ 

Insert Figures 13a, 13b, 13c about here 

------------------------------------------------------ 

DISCUSSION 

This paper examines the impact of AlphaFold1, a methodological advance in artificial intelligence, 

on the size and expertise composition of established academic labs engaged in PF-related software 

development. Results show that in response to AlphaFold1 PF labs became larger, and that the way 

in which principal investigators modified the expertise composition of their labs depended on their 

academic background. 

The results are not without limitations, although each is somewhat mitigated by the features 

of the setting. One fundamental limitation is represented by the nature of the shock considered. 

Google’s DeepMind launched two versions of AlphaFold: AlphaFold1 in 2018, and AlphaFold2 in 

2020. Causal claims regarding the impact of these methodological advances on the size and expertise 

composition of established academic labs may confound the effect of the two versions of AlphaFold. 

This paper treats AlphaFold1 as the main shock, because it was immediately recognized as an 
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unexpected event of an industrial lab entering the PF subfield, significantly impacting established PF 

academic labs (AlQuraishi, 2019). The accuracy score in 2018 (58.9 GDT) associated with 

AlphaFold1 suggests that its impact was sufficiently strong to be felt by principal investigators 

engaged in PF-related software development; but not strong enough to have an impact on labs 

engaged in software development for computationally modelling other protein-related phenomena 

(Abriata, 2021). However, the nature of the shock does not allow to disentangle the impact of 

AlphaFold1 from the impact of AlphaFold2, especially after 2020. 

 A second limitation refers to the criterion used for identifying “treated” labs (i.e., academic 

labs that have participated in CASP at least once in the period 2014-2018). Ideally, treatment 

indicators should be built through measures of technological proximity (Bloom, Schankerman & Van 

Reenen, 2013). In other words, also labs that have not participated in the CASP initiative are likely 

to have developed some PF-related software throughout their history. Moreover, some labs in the 

control group may have participated in the CASP initiative before 2014. Building measures of labs’ 

technological proximity to the PF subfield would allow a more nuanced understanding of labs’ 

response to AlphaFold1. The present analysis uses participation in the CASP initiative at least once 

between 2014 and 2018 for two reasons. First, the paper hypothesizes that principal investigators who 

have participated in the CASP initiative in the same period in which DeepMind joined are those most 

likely to respond to the shock. Second, the CASP initiative is considered the “Olympics for protein 

folding” (Toews, 2021, “A Triumph of AI” section, para. 1), in which participate academic labs from 

all over the world. The analysis assumes that all labs able to participate in the CASP initiative do 

participate. 

One may argue that sample selection issues might bias the results. It is possible that only labs 

located in the most resourceful institutions can participate in the “Olympics for protein folding” 

(Toews, 2021). Principal investigators participating in the CASP initiative would thus be the ones 
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most likely to act on the size and expertise composition of their labs in response to a methodological 

advance, while principal investigators not participating in CASP would not have sufficient resources 

to do so. This issue may lead to an over-estimation of AlphaFold’s impact on lab size and expertise 

composition. To address this concern, Figure 4 shows distribution of institutions by country and 

scientific subfield. Although sample selection issues may still affect the results, Figure 4 shows that 

PF labs are not located in the most resourceful institutions, nor are they disproportionately located in 

the US. 

 Another limitation refers to how the dataset and variables were built. Measures of expertise 

composition were built by considering the entire academic background of each lab member. In the 

approach used in this paper, equal weight was assigned to the competences gained by lab members 

during their Bachelor’s, Master’s and/or PhD programs. However, competences may decay over time. 

Lab members’ last academic achievements are likely to be the most reliable indicators of their 

expertise. Assigning greater weight to competences gained later (and lower weight to competences 

acquired in the earlier stages of a lab member’s academic career) would allow a more nuanced 

understanding of principal investigators’ response. Further research on this point is warranted. 

The present study considers a very specific setting and an unusual shock. The analysis 

considers a subfield of computational biology, in which principal investigators of labs engaged in PF-

related software development adapt in response to a methodological advance in artificial intelligence 

which may make their work obsolete. Questions about the generalizability of this setting and the 

results obtained necessarily arise. Two features of this study may extend the validity of the theoretical 

framework proposed, and of the findings obtained. First, the analysis considers academic labs that 

are: (i) headquartered in 25 countries all over the world; (ii) active for the solution of similar scientific 

problems; (iii) apply the same (scientific) method in institutions with similar purposes (i.e., academic 

institutions); but (iv) have discretion over which competences to recruit. This feature allows to isolate 
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the decisions of key organizational decision-makers (in this context, principal investigators), while 

holding constant cultural, technological, and institutional factors. Second, the analysis investigates 

how novel and more powerful AI-based software impacts organizations in a scientific subfield. In a 

world characterized by increasing competition between Big Tech companies for developing the most 

powerful algorithms, studies about the impact of a new AI-based software program on decisions of 

established organizations about human capital and organizational composition can provide useful 

insights to practitioners and policymakers. 

CONCLUSION 

This paper investigates the impact of a methodological advance in artificial intelligence on the size 

and expertise composition of established academic labs. The unexpected success of AlphaFold1 (an 

AI-based software program for predicting proteins’ 3-D structure) in 2018 was an event that 

significantly impacted the work of established academic labs engaged in similar PF-related software 

development. Results show that impacted principal investigators hired more PhD students and 

Postdoctoral researchers. However, their response varied depending on their academic background: 

(i) principal investigators with a CS academic background adapted to AlphaFold1 by deepening the 

expertise within their labs, recruiting more CS PhD students and Postdocs; (ii) principal investigators 

with a LS academic background adapted by broadening the expertise of their labs, recruiting more 

CS PhD students and Postdocs, and stopping recruitment of LS profiles; (iii) principal investigators 

with an LS+CS adapted by reducing the number of CS lab members while retaining LS profiles. As 

noticed by observers at the 15th edition of the CASP initiative in 2022 (four years after AlphaFold1, 

and two years after AlphaFold2), “the most successful teams were those that had adapted and built 

on AlphaFold in various ways” (Callaway, 2022, “Matchmaking” section, para. 5). 
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 Concerns have arisen regarding the negative consequences of artificial intelligence, and the 

rising levels of unemployment induced by job automation (Korinek & Stiglitz, 2018). Theoretical 

models have shown that artificial intelligence is likely to automate low-skilled tasks (Acemoglu & 

Restrepo, 2019). This paper proposes an alternative explanation of the interaction between humans 

and artificial intelligence. Artificial intelligence has the potential to strongly augment human 

capacities (Athey, Bryan & Gans, 2020). Past literature has focused on artificial intelligence’s ability 

to produce outcomes; however, artificial intelligence, by its own design, cannot provide nor grasp the 

abstract cause of phenomena. Artificial intelligence does act in a way to modify internal parameters, 

in order to maximize an objective function (LeCun, Bengio & Hinton, 2015). But it does not generate 

understanding of the abstract cause of phenomena – an ability coded into machines by their builders 

(Turing, 1950). Nor can artificial intelligence answer why it performs a task – this feature explains 

the intrinsic impossibility for machines to be held accountable for their actions (Galasso & Luo, 

2018). This paper is aligned with the view of Garry Kasparov (the first World Champion to lose a 

chess game against a computer) in advocating for a friendly collaboration between humans and AI 

(De Cremer & Kasparov, 2021). However, this paper aims to offer an additional insight. Not only 

will multiple artificial intelligences arise to solve different tasks, but also multiple artificial 

intelligences incorporating different combinations of human competences will emerge to execute the 

same task in different ways. This is especially true in scientific endeavors directed towards 

understanding the abstract cause of complex biological phenomena. Multiple organizational 

recombinations will emerge to capture different nuances of the infinite complexity of reality. 

Past literature has shown that companies can hinder subsequent innovation (Williams, 2013), 

find it convenient to incorporate R&D that originates outside the firm (Chesbrough, 2003), are 

shifting away from investments in scientific research (Arora, Belenzon & Patacconi, 2018), and tend 

to focus on applied research with immediate commercial applications, while universities specialize 
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in basic research (Nelson, 1959). The AlphaFold case shows instead that companies can participate 

actively in the production of basic science without immediate commercial applications. Academics 

participating in the CASP initiative in 2018 had the sense that DeepMind was “in it for the science” 

(AlQuraishi, 2018, “AlphaFold” section, para. 1). A question necessarily arises: why would a 

company have the incentive to participate in a scientific competition such as the CASP initiative? 

Google’s DeepMind was not the only company participating in the CASP initiative. Other companies 

have participated in the CASP initiative, including Microsoft and Tencent. This question can have 

multiple answers. These companies may decide to participate in these scientific initiatives to fulfill 

their corporate social responsibility goals (Kaplan, 2019). Or they may be implementing novel non-

market strategies (Dorobantu, Kaul & Zelner, 2017), especially in a period in which Big Tech is 

suffering from a severe loss of legitimacy. These companies may also be trying to validate their core 

competences (Prahalad, 1993), while spreading the cost of R&D efforts for producing this basic 

research over multiple applications (Cohen & Klepper, 1996). These factors may explain why Google 

might have decided to join the CASP initiative, “solve” the “protein folding” problem, and participate 

in a collective effort of scientific knowledge production. 

The AlphaFold1 case shows that multiple stakeholders are needed for solving the Grand 

Challenges of the 21st century (McGahan, 2015). The scientific community may provide the 

foundational insights for understanding a complex biological phenomenon such as “protein folding” 

(Anfinsen, 1973), and all the theoretical contributions upon which DeepMind relied. Companies like 

DeepMind may instead provide the necessary resources and capabilities for processing huge amounts 

of data. At the end of the 13th edition of the CASP initiative in 2018, academics belittled “DeepMind’s 

contribution by noting its seeming incrementality and crediting their success to Alphabet’s resources” 

(AlQuraishi, 2018, “What just happened?” section, para. 2). The AlphaFold1 case shows that multiple 

actors – with diverse perspectives, goals, resources, and capabilities – can coalesce (Cavalli & 
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McGahan, 2023 forthcoming) for achieving one of the greatest goals posed to humanity: 

understanding the origins of life. To capitalize on the advances brought by AlphaFold1, and to 

produce better knowledge for achieving these goals, the principal investigators of frontier academic 

labs adapted by making their own labs larger and engaging in different knowledge-generating 

strategies based on their academic background. Artificial Intelligence tools such as AlphaFold will 

allow scientists not only to expand, but also to realize the increasing complexity of frontier science.  
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FIGURES AND TABLES 

 

Figure 1: Decision Tree for Principal Investigator of Lab k 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Locations of the academic institutions in which established academic labs are based 

(177 Labs; 120 academic institutions [blue dots]; 25 countries) 
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Figure 3: Established academic labs by subfield and country 

# Country 

Labs engaged in PF-

related software 

development 

Labs engaged in 

software 

development for 

other protein-

related phenomena 

Total Labs per 

Country 

1 Argentina 0 1 1 

2 Belgium 0 1 1 

3 Brazil 1 0 1 

4 Canada 0 1 1 

5 China 2 2 4 

6 France 3 3 6 

7 Germany 2 10 12 

8 Hungary 0 1 1 

9 India 1 1 2 

10 Ireland 1 0 1 

11 Israel 1 7 8 

12 Italy 0 2 2 

13 Japan 1 0 1 

14 Lithuania 1 0 1 

15 Netherlands 2 2 4 

16 Poland 1 2 3 

17 Portugal 0 1 1 

18 Saudi Arabia 0 2 2 

19 South Korea 1 0 1 

20 Spain 3 5 8 

21 Sweden 2 0 2 

22 Switzerland 1 2 3 

23 Turkey 0 1 1 

24 United Kingdom 4 12 16 

25 United States 28 66 94 

Total 55 122 177 
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Figure 4: Institutions by country and labs’ scientific subfield 

# Country 

Institutions with labs 

engaged in PF-related 

software development 

Institutions with labs 

engaged in both PF-

related and other 

protein-related 

phenomena 

Institutions with labs engaged in software 

development for other protein-related phenomena 

Total 

institutions 

per country 

1 Argentina   National University of Quilmes 1 

2 Belgium   KU Leuven 1 

3 Brazil 
Laboratorio Nacional de 

Computacao Cientifica 
  1 

4 Canada   University of Toronto 1 

5 China Nankai University 
Huazhong University of 

Science and Technology 
Westlake University 3 

6 France 

Institut Universitaire de 

France; Laboratoire Jean 

Kuntzmann 

University of Paris 
Conservatoire National des Arts et Métiers; Institut de 

Biologie Paris-Seine 
5 

7 Germany 

Heinrich Heine 

Universität Düsseldorf; 

Technical University of 

Berlin 

 

European Molecular Biology Laboratory (Hamburg); 

Forschungszentrum Jülich; Martin Luther University 

Halle-Wittenberg; Max Planck Institute for 

Developmental Biology; Max Planck Institute of 

Biophysics; Technical University of Munich; 

Universität Hamburg; University of Bayreuth 

10 

8 Hungary   Eötvös Loránd University 1 

9 India 

Indraprastha Institute of 

Information Technology 

Delhi 

 
Indian Institute of Science Education and Research 

Pune 
2 

10 Ireland 
University College 

Dublin 
  1 

11 Israel 
Ben-Gurion University 

of the Negev 
 

Hebrew University of Jerusalem; Tel Aviv 

University; Weizmann Institute of Science 
4 

12 Italy   University of Bologna; University of Milan 2 

13 Japan RIKEN   1 

14 Lithuania Vilnius University   1 

15 Netherlands 

Radboud University 

Nijmegen; Utrecht 

University 

 Antoni van Leeuwenhoek Hospital; VU Amsterdam 4 

16 Poland  University of Gdansk University of Warsaw 2 

17 Portugal   University of Coimbra 1 

18 Saudi Arabia   King Abdullah University of Science and Technology 1 

19 South Korea 
Seoul National 

University 
  1 

20 Spain Barcelona 

Supercomputing Center; 
 

Autonomous University of Barcelona; Centre for 

Genomic Regulation; University of Barcelona 
5 
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Pompeu Fabra 

University 

21 Sweden 
Linköping University; 

Stockholm University 
  2 

22 Switzerland University of Basel  École Polytechnique Fédérale de Lausanne 2 

23 Turkey   Middle East Technical University 1 

24 
United 

Kingdom 

The Francis Crick 

Institute; University of 

Oxford; University of 

Reading 

University College 

London 

European Bioinformatics Institute; Imperial College 

London; Medical Research Council; University of 

Cambridge; University of London; University of 

Manchester 

10 

25 United States 

Brigham Young 

University; City of 

Hope; Michigan State 

University; Nationwide 

Children’s Hospital; 

Pacific Lutheran 

University; Rice 

University; Stony Brook 

University; University at 

Buffalo, State University 

of New York; University 

of Florida; University of 

Miami; University of 

Michigan-Ann Arbor; 

University of Missouri; 

University of New 

Orleans; Western 

Washington University 

Columbia University; 

Florida State University; 

Georgia Institute of 

Technology; Purdue 

University West 

Lafayette; Rutgers, The 

State University of New 

Jersey; University of 

Chicago; University of 

Kansas; University of 

Washington; Virginia 

Tech 

Albert Einstein College of Medicine; Baylor College 

of Medicine; Boston University; Clemson University; 

Colorado State University; Cornell University; 

Dartmouth College; Fox Chase Cancer Center; 

George Mason University; Harvard University; 

Indiana University; Iowa State University; Johns 

Hopkins University; Louisiana State University; 

Massachusetts Institute of Technology; Old 

Dominion University; Stanford University; Texas 

A&M University; The University of Texas at Austin; 

The University of Texas Southwestern Medical 

Center; University of California, Berkeley; University 

of California, Irvine; University of California, Los 

Angeles; University of California, Riverside; 

University of California, San Francisco; University of 

Delaware; University of Georgia; University of 

Illinois at Chicago; University of Illinois Urbana-

Champaign; University of Maryland, College Park; 

University of Massachusetts Amherst; University of 

North Carolina at Chapel Hill; University of 

Pittsburgh; Worcester Polytechnic Institute 

57 

Total 36 13 71 120 
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Figure 5: Treated and control groups, for all labs and senior labs, 

by principal investigators’ academic background 

 All labs Senior labs (operational 2015-2021) 

 Treated Control Total Treated Control Total 

PI LS 13 32 45 12 25 37 

PI CS 14 23 37 9 21 30 

PI LS+CS 28 67 95 21 55 76 

Total 55 122 177 42 101 143 

 

 

 

 

Figure 6: Established academic labs engaged in PF-related software development (i.e., labs that have 

participated in CASP at least once in the period 2014-2018) increased their average size through 

recruitment of PhD students and Postdoctoral researchers following the unexpected success of 

AlphaFold1 in 2018. 
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Figures 7a, 7b, 7c, 7d (All labs): Yearly difference-in-difference coefficients show increases in size 

in terms of PhD students and Postdoctoral researchers within established academic labs engaged in 

PF-related software development, following the unexpected success of AlphaFold1 in 2018 (Figure 

7b). 

 

 

 

Figure 7a:       Figure 7b: 

            
 

 

Figure 7c:       Figure 7d: 
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Figures 8a, 8b, 8c, 8d (Senior labs): Yearly difference-in-difference coefficients show increases in 

size in terms of PhD students and Postdoctoral researchers within established academic labs engaged 

in PF-related software development, following the unexpected success of AlphaFold1 in 2018 (Figure 

8b) 

 

 

 

Figure 8a:       Figure 8b: 

          
 

 

Figure 8c:       Figure 8d: 
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Figures 9a, 9b, 9c (All labs; focus on PhD students and Postdoctoral researchers): Yearly triple 

difference coefficients show increases in size for PF labs led by principal investigators with a CS 

academic background (Figure 9a) and decreases in size for PF labs led by principal investigators with 

a LS+CS academic background (Figure 9c), following the unexpected success of AlphaFold1 in 2018. 

 

 

Figure 9a:       Figure 9b: 

          
 

 

Figure 9c: 
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Figures 10a, 10b, 10c (Senior labs; focus on PhD students and Postdoctoral researchers): Yearly 

triple difference coefficients show increases in size for PF labs led by principal investigators with a 

CS background (Figure 10a) and decreases in size for labs led by principal investigators with a LS+CS 

background (Figure 10c), following the unexpected success of AlphaFold1 in 2018. 

 

 

Figure 10a:       Figure 10b: 

          
 

 

Figure 10c: 
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Figures 11a, 11b, 11c (All labs; focus on CS Principal Investigators): Principal investigators of 

PF labs with a CS academic background increased recruitment of lab members with a CS background 

(Figure 11a), and stopped recruitment of lab members with an LS background (Figure 11b), following 

the unexpected success of AlphaFold1 in 2018. 

 

 

Figure 11a:       Figure 11b: 

          
 

 

Figure 11c: 
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Figures 12a, 12b, 12c (All labs; focus on LS Principal Investigators): Principal investigators of 

PF labs with an LS academic background increased recruitment of lab members with a CS 

background (Figure 12a), and stopped recruitment of lab members with an LS background (Figure 

12b), following the unexpected success of AlphaFold1 in 2018 

 

 

Figure 12a:       Figure 12b: 

          
 

 

Figure 12c: 
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Figures 13a, 13b, 13c (All labs; focus on LS+CS Principal Investigators): Principal investigators 

of PF labs with an LS+CS academic background reduced recruitment of lab members with a CS 

background (Figure 13a), and stopped dismissing lab members with an LS background (Figure 13b), 

following the unexpected success of AlphaFold1 in 2018. 

 

 

Figure 13a:       Figure 13b: 

                   
 

 

Figure 13c: 
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Table 1: Principal investigators of established academic labs engaged in PF-related software 

development (i.e., labs that have participated in CASP at least once in the period 2014-2018) have 

adapted by recruiting more PhD students and Postdoctoral researchers following the unexpected 

success of AlphaFold1 in 2018 (Columns 5 and 6; result in Column 6 is significant at p<0.111). 

 

 

 

 

 

 


